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bstract

A multicomponent analysis method based on principal component analysis-artificial neural network models (PC-ANN) is proposed for the
etermination of phenolic compounds. The method relies on the oxidative coupling of phenols (phenol, 2 chlorophenol, 3-chlorophenol and 4-
hlorophenol) to N,N-diethyl-p-phenylenediamine in the presence of hexacyanoferrate(III). The reaction monitored at analytical wavelength 680 nm
f the dye formed. Phenols can be determined individually over the concentration range 0.1–7.0 �g ml−1. Differences in the kinetic behavior of the
our species were exploited by using PC-ANN, to resolve mixtures of phenol. After reducing the number of kinetic data using principal component

nalysis, an artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. The optimized
NN allows the simultaneous quantitation of four analytes in mixtures with relative standard errors of prediction in the region of 5% for four

pecies. The results show that PC-ANN is an efficient method for prediction of the four analytes.
2008 Elsevier B.V. All rights reserved.

cial n

m
r
r
[
w
e
n
r
f
s
t
a
i

eywords: Phenol; 2-Chlorophenol; 3-Chlorophenol; 4-Chlorophenol; Artifi
etermination; Principal component analysis

. Introduction

The determination of mixtures of chemical compounds with
imilar structures and properties is one of the topics of chemical
nalysis, which has typically been addressed using separation
echniques. Nevertheless, in the past two decades, quantitative
pectrophotometry for multicomponent chemical mixtures has
een greatly improved by the use of a variety of multivariate
alibration method such as CLS [1–3], ILS [4–6], PCR [7–9],
nd PLS [10–12]. Recently, chemometrics methods based on
rtificial intelligence, such as artificial neural networks (ANN)
13–15], and genetic algorithms [16–18] have found increasing
pplications for multicomponent determinations. These meth-
ds are effective in spectrophotometric analysis because the

imultaneous analysis of several spectral intensities can greatly
mprove the precision and applicability.
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m
p
[
o

i
s

304-3894/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2007.12.096
eural network; Multivariate calibration; Quaternary mixtures; Simultaneous

Various chemometric methods have been applied to resolve
ixtures of different analytes using their spectra at equilib-

ium [4,5,19,20]. They record the spectra after the reaction
eaches equilibrium. A number of differential kinetic methods
21–24] have been developed for resolving mixtures of analytes
ith similar or identical spectra, which cannot be resolved by

quilibrium-based methods. The simultaneous kinetic determi-
ation of such analytes is usually based on the difference in their
eaction rate constants. This difference must be large enough
or the differential kinetic methods to discriminate the rate con-
tants, and for successful handling of univariate data. Moreover,
raditional differential kinetic methods are probably complicated
nd in most cases they require additional information by an
ndependent method. A number of multivariate chemometric

ethods including MLR [25,26], PCR, and PLSR have been
roposed to carry out multicomponent kinetic determinations
21,27,28], which resulted in increased selectivity and linearity

f the calibration range.

Phenolic compounds are some of the most important contam-
nates present in the environment as a result of various processes
uch as plastics, dyes, pesticides, paper and petrochemical prod-
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cts [29–32]. Phenols are widely used for the commercial
roduction of a wide variety of resins including phenolic resins,
hich are used as construction materials for automobiles and

ppliances, epoxy resins, adhesives, and polyamide for vari-
us applications. Phenols as a class of organics are similar in
tructure to the more common herbicides and insecticides in
hat they are resistant to biodegradation. Some waterways can
e contaminated for phenols and hazardous effects may occur
o the people, also to aquatic organisms, fish and other life
orms [33]. Phenols can be absorbed into human body through
he skin and the digestive and respiratory system [34]. Phenol
ecomposition is difficult due to, principally, its stability and
ts solubility in water. In the presence of chlorine in drinking
ater, phenols form chlorophenols, which exhibit toxic effect
n animals and plants [35,36]. Hence, the determination of
race phenol is very important for evaluating the total toxic-
ty of an environmental water sample. Several methods, such as
pectrophotometry [37,38], electrochemical methods [39–41],
iquid chromatography [42,43], gas chromatography [44,45],
nd capillary electrophoresis [46] have been described in the
iterature for detection of phenols in water samples. However,
ome of these techniques are expensive, time consuming and
eed skilful operators and sometimes require preconcentration
nd extraction steps that increase the risk of sample loss.

Artificial neural networks (ANNs) are powerful chemomet-
ic methods because of their high efficiency as predictors for
on-linear systems. In fact many kinetic problems (e.g. interac-
ions between analytes, the presence of one or more analytes
nvolved in a multi-step process, second order kinetics) are
ntrinsically nonlinear [47]. With proper training, ANNs can
ccurately model the presence of synergistic effect and avoid
he potential loss of kinetic data for mixtures resulting from too
hort induction periods, outliers, small differences in the rate
onstants, and so on. The principle of ANNs can be found else-
here [48]. The difference in kinetic behavior of considered

nalytes in nonlinear systems was previously modeled using the
bility of ANNs [49,50].

In this work, a differential spectrophotometric method has
een developed for the simultaneous analysis of quaternary mix-
ures of phenols (phenol, 2-chlorophenol, 3-chlorophenol, and
-chlorophenpl) with the aid of chemometrics approach prin-
ipal component analysis-artificial neural networks (PC-ANN).
he method is based on the kinetics of the individual phenols

n the well-known oxidative coupling reactions of these com-
ounds in a weakly basic medium. The method allows these
ixtures to be resolved with a high accuracy even at low rate

onstant ratio.

. Experimental

.1. Solutions and reagents

All reagents were of analytical reagent grade and used

ithout further purification. Doubly distilled water was
sed throughout. Stock solutions of 3.0 × 10−3 M phenol,
-chlorophenol, 3-chlorophenol, and 4-chlorophenol (Merck)
ere prepared by dissolving the appropriate amount of each

3

a
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ompound in ethanol. Standard solutions of these phenols or
heir mixtures were then diluted with water to the required con-
entration in the experiments. A 8.0 × 10−3 M stock solution of
,N-diethyl-p-phenylenediamine (PPD, Merck) was prepared
y dissolving 65 mg of the chemical in ethanol in a 50-ml
olumetric flask. This solution was unstable, so it had to be
repared fresh daily and kept on ice during sampling to mini-
ize degradation. A 2.6 × 10−3 M stock solution of potassium

exacyanoferrate(III) was prepared by dissolving 796 mg of
he chemical in 10 ml of water. The 0.5 M phosphate buffer
pH = 7.5) was prepared by dissolving 87.1 g of di-potassium
ydrogen phosphate (Merck) in about 900 ml of water, adjust-
ng the pH to 7.5 with hydrochloric acid and diluting to 1 L with
istilled water.

.2. Apparatus

UV-vis absorbance digitized spectra were collected on
Perkin-Elmer Lambda 45 spectrophotometer, using a

cm quartz cell within the wavelength range 400–800 nm.
bsorbance measurements as a function of time, at a fixed
avelength were made on a Metrohm 662 photometer equipped
ith an immersion probe. A double jacket cell was kept at con-

tant temperature by circulation of themostated water through
n Optima 740 thermostat. The pH of the solutions was mea-
ured with a Metrohm 744 pH-meter using a combined glass
lectrode. The data were processed on a Pentium IV computer
ith programs written in MATLAB 6.5 on Windows.

.3. Procedure

Here, 7.5 ml phosphate buffer 0.5 M (pH = 7.5), 2.5 ml
.0 × 10−3 M of PPD and appropriate volumes of stock solu-
ions of phenol, 2-, 3-, and 4-chloropheol were added to 100 ml
olumetric flask and diluted to the mark with water. These work-
ng solutions contain 0.2–7.0 �g ml−1 of each phenol. For each

easurement, 20 ml of the above solution were placed directly
nto the measuring cell. The dip-type probe of the photometer
as immersed in the solution. For the reaction to take place,
.5 ml of the oxidant K3Fe(CN)6 8.0 × 10−3 M was added to
revious mixture. The system was kept at a constant temperature
f 20 ◦C, under stirring, throughout the reaction. The variation
f absorbance versus time at 680 nm was measured 10 s after
ddition of K3Fe(CN)6 for duration of 300 s at a time interval
f 10 s (30 absorbance readings for each samples). All mea-
urements were obtained against the blank solution treated in
he same way without phenols and the absorbance readings for
lank were also recorded and followed as a function of time.
he signal �A (�Atotal – �Ablank) between 1 and 5 min was
onsidered as analytical signal. The kinetic data obtained from
xperiments were processed by ANN, which was trained with
he back-propagation of errors learning algorithm.
. Results and discussion

Oxidative coupling reactions of p-phenylenediamines with
mines and phenolic compounds are widely known by analyt-
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cal chemists [51–55]. The proposed method for the resolution
f mixtures of phenolic compounds (phenol and chlorophenols)
elies on the reaction, in which N,N-diethyl-p-phenylenediamine
PPD) is oxidized to its quinonedi-imine (QDI) by potas-
ium hexacyanoferrate(III) in weakly basic medium. In the
ate-limiting step, QDI reacts with phenolic compound to

ive leucoindophenols, which are rapidly oxidized to colored
ndophenols with the aid of a QDI [53] molecules that absorb
t λmax of 680 nm (see Scheme 1). Fig. 1 shows the spectra of
ixture of 1.0 × 10−5 M of each desired phenol in the pres-

ig. 1. The absorbance spectra of (a) phenol; (b) 2-chlorophenol; (c) 3-
hlorophenol; (d) 4-chlorophenol 1.0 × 10−5 M in the presence of 2.0 × 10−4 M
PD and 6.0 × 10−4 M K3Fe(CN)6 at pH 7.5 at 20 ◦C; (e) blank at optimum
onditions.
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nce of 2.0 × 10−4 M PPD and 6.0 × 10−4 M K3Fe(CN)6 at
H = 7.5 at 20 ◦C (optimum conditions) along with blank spec-
ra. These spectra are recorded immediately after mixing phenols
ith other reagents. As seen, there are nearly no differences
etween maximum absorption wavelength of colored products
ormed by the four phenols in oxidative coupling reaction with
PD and their absorption spectra seriously overlaps one another.
t is very difficult to determine the four phenols in their mix-
ures by using any traditional simultaneous spectrophotometry.

t should be noted, the spectra of phenols in their oxidative cou-
ling reaction with PPD are time dependent. Sample spectra
or 2-chlorophenol in the presence of other reagents at optimum
onditions is shown in Fig. 2. The absorption at 680 nm increases

ig. 2. The absorbance spectra of 2-chlorophenol 1.0 × 10−5 M at the time
nterval 1–5 min at optimum conditions.
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3.1.5. Kinetic study of reaction between phenols and PPD
Fig. 7 shows typical absorbance versus time curves for the

four phenolic compounds, which were processed by the data
ig. 3. Effect of pH on the �A signals of (a) phenol; (b) 2-chlorophenol; (c)
-chlorophenol; (d) 4-chlorophenol 1.0 × 10−5 M in the studied reaction.

ith elapse of time and the absorption maxima at about 500 and
50 nm decrease.

Preliminary studies on the kinetic behavior of these phenolic
ompounds showed differences in their reactivity. However, the
eaction rate for phenol, 2-, and 3-chlorophenol was similar and
he three reactions developed to completion within a few min-
tes, whereas that for 4-chlorophenol was very low, which is
onsistent with Scheme 1. So, at least, resolution of mixtures of
henol, 2-, and 3-chlorophenol is a problem due to their similar
inetic behavior. The ratio of the greatest and the lowest rate
onstants (2-chlorophenol and phenol, respectively, among the
hree ones) is about 2.7 (Section 3.1.7), which precludes usage
f classical differential reaction rate methods. We chose to use
he chemometric approach PC-ANN to address this problem.
he absorption maximum at 680 nm was selected as the analyt-

cal wavelength. At this wavelength the molar absorptivity of
he colored product of each phenol was large enough and the
nfluences of colored reagent blank on the determinations were
ow enough.

.1. Influence of variables

The overall process is influenced by factors such as pH of the
uffer, concentration of PPD, concentration of K3Fe(CN)6 and
emperature which affect the absorbance of the colored product.
he operation conditions must be optimized prior to calibration.

.1.1. Influence of pH
Influence of pH on the individual phenol reaction was studied

ver the range 5.5–8.5 in order to establish the experimental con-
itions resulting in the greatest possible discrimination between
he kinetic behavior of phenols and greatest value of signal. The
lot of �A (�Atotal – �Ablank) between 1 and 5 min for each
henol against pH is shown in Fig. 3. At pH 7.5, the greatest
alue of �A and also relative good discrimination between the
inetic behaviors of four analytes is observed. So, this pH was
hosen for further experiments.

.1.2. Influence of N,N-diethyl-p-phenylenediamine (PPD)

oncentration

The effect of the concentration of PPD was examined in the
ange of 1.0 × 10−5 to 8.0 × 10−4 M. As Fig. 4 shows the �A
ignal for four phenols was maximum at 2.0 × 10−4 M of PPD

F
(
s

ig. 4. Influence of PPD concentration on the �A signals of (a) phenol; (b)
-chlorophenol; (c) 3-chlorophenol (d) 4-chlorophenol 1.0 × 10−5 M in the
tudied reaction.

0.5 ml of 8.0 × 10−3 M ethanolic solution) so, this concentra-
ion was chosen as optimal.

.1.3. Influence of potassium hexacyanoferrate(III)
The concentration of oxidant potassium hexacyanofer-

ate(III) was varied over the range 1.0–8.0 × 10−4 M in order
o investigate its effect on the rate of reactions and �A signals.
he �A signal was found to be maximum at 6.0 × 10−4 M of the
xidant and the difference in the kinetic behavior of four ana-
ytes is also reasonable (Fig. 5). Above this concentration there
s little change in �A signal, probably due to independence of
he rate of reaction on such concentrations.

.1.4. Influence of temperature
Since the PPD decomposes at high temperatures, the varia-

ion of temperature affects behavior of PPD. So, the effect of
emperature on the behavior of oxidative reaction of phenols
ith PPD was investigated. The absorbance recorded at 680 nm

or each phenol increased with an increase in temperature up to
0 ◦C and then slowly decreased after that. So, this temperature
as selected to be used in further experiments (Fig. 6).
ig. 5. Influence of oxidant concentration on the �A signals of (a) phenol;
b) 2-chlorophenol; (c) 3-chlorophenol; (d) 4-chlorophenol 1.0 × 10−5 M in the
tudied reaction.
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Fig. 6. Effect of temperature on the �A signals of (a) phenol; (b) 2-chlorophenol;
(c) 3-chlorophenol; (d) 4-chlorophenol 1.0 × 10−5 M in the studied reaction.

Fig. 7. Measured (points) and calculated absorbance according to nonlinear
least square fitting of data to equation 1 (solid lines) for 1.0 × 10−5 M of (a)
phenol; (b) 2-chlorophenol; (c) 3-chlorophenol; (d) 4-chlorophenol at described
experimental conditions.
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Table 1
Composition of calibration, prediction, and validation samples in quaternary mixture

Sample Concentration (�g ml−1)

Calibration set Prediction set

Phenol 2-cl 3-cl 4-cl Phenol 2-c

1 0.11 0.16 0.12 0.20 0.14 0.1
2 0.11 0.38 0.31 0.54 0.14 0.3
3 0.11 0.77 0.61 0.69 0.14 0.6
4 0.11 1.00 1.00 1.15 0.14 0.9
5 0.56 0.16 0.31 0.69 0.33 0.1
6 0.56 0.38 0.12 1.15 0.33 0.3
7 0.56 0.77 1.00 0.20 0.33 0.6
8 0.56 1.00 0.61 0.54 0.33 0.9
9 0.84 0.16 0.61 1.15 0.95 0.1

10 0.84 0.38 1.00 0.69 0.95 0.3
11 0.84 0.77 0.12 0.54 0.95 0.6
12 0.84 1.00 0.31 0.20 0.95 0.9
13 1.12 0.16 1.00 0.54 1.12 0.1
14 1.12 0.38 0.61 0.20 1.12 0.3
15 1.12 0.77 0.31 1.15 1.12 0.6
16 1.12 1.00 0.12 0.69 1.12 0.9
dous Materials 157 (2008) 161–169 165

cquisition system. As can be seen, the reaction was somewhat
aster for 2-chlorophenol and, very similarly, rapid for phenol
nd 3-chlorophenol and very slow for 4-chlorophenol. So, the
-chlorophenol may be determined in the presence of others by
sing a simple sequential method, but this was not assayed in this
ork. The kinetic process of phenols with DDP and K3Fe(CN)6

n the presence of excess amount of later reagents can be con-
idered as a pseudo-first-order kinetic reaction. According to
he pseudo-first-order reaction model, the rate constant for each
omponent can be calculated by fitting the kinetic data obtained
rom several known single component samples into the follow-
ng equation:

t = A∞ + (A0 − A∞) exp(−kt) (1)

y a suitable regression method (A0, A∞ and At are the mea-
ured absorbances at initial, infinite and time t, respectively).
he observed rate constant for each system was evaluated
y fitting the corresponding absorbance-time data to Eq. (1)
sing a nonlinear least squares curve fitting program KIN-
IT [56]. The program is based on the iterative adjustment of
alculated to observed absorbance values by using either the
entworth matrix [57] technique or the Powel procedure [58].

he adjustable parameters are k and A∞. Calculated absorbances
s a function of time for 1.0 × 10−5 M of each phenol and
.0 × 10−4 M K3Fe(CN)6 and 2.0 × 10−4 M PPD at optimum
ondition are also shown in Fig. 7 as solid lines. A good agree-
ent between the observed and calculated absorbances further

upports the occurrence of reaction between phenols and DDP
n the presence of K3Fe(CN)6 via a first order mechanism.
he calculated rate constants (s−1) for phenol, 2-, and 3-

hlorophenol are (5.61 ± 0.08) × 10−3, (1.52 ± 0.0.02) × 10−2,
7.87 ± 0.12) × 10−3, respectively. Because of the little change
n absorbance for 4-chlorophenol in the studied reaction, the
orresponding data were not fitted well.

s of phenols

Validation set

l 3-cl 4-cl Phenol 2-cl 3-cl 4-cl

6 0.17 0.12 0.52 0.63 0.31 0.30
8 0.35 0.47 0.77 0.94 0.34 0.18
2 0.84 0.69 0.38 0.13 0.57 0.13
2 1.00 1.15 0.95 0.23 0.56 0.59
6 0.35 0.69 0.12 0.36 0.41 0.51
8 0.17 1.15 0.72 0.14 0.55 0.64
2 1.00 0.12 0.61 0.53 0.47 0.61
2 0.84 0.47 0.83 0.32 0.74 0.44
6 0.84 1.15 0.73 0.26 0.18 0.51
8 1.00 0.69 0.86 0.42 0.36 0.27
2 0.17 0.47 0.19 0.20 0.15 0.18
2 0.35 0.12 0.35 0.63 0.32 0.54
6 1.00 0.47 0.84 0.41 0.19 0.70
8 0.84 0.12 0.20 0.30 0.79 0.78
2 0.35 1.15 0.75 0.55 0.20 0.65
2 0.17 0.69 0.36 0.29 0.24 0.50



166 M. Hasani, M. Moloudi / Journal of Hazar

F
c

3

c
u
i
f
7

3
c

d
v
p
c
T
f
c
e
t
c
c
c
b
a
n
o
t
T
o
w
i
p
i
e
a
r
S
f

b
l

o
w
o
c
b
c
s
h
n
d
f
w
o
l
s
n
t

n
r
f
d

R

a
b
m
c
t
c
s

The number of data values used for training must exceed that
of weights determined in the network; this entails using a large
number of samples for calibration if the number of input vari-
ables is also large. This is a frequent problem with kinetic data

Table 2
Optimized parameters used for construction of ANN models

Parameters Compound

Phenol 2-Chlorophenol 3-Chlorophenol 4-Chlorophenol

Input nodes 3 3 3 3
Hidden nodes 3 1 5 6
Number of

iterations
150 100 80 50

Output nodes 1 1 1 1
Learning rate 0.001 0.0024 0.002 0.0018
Hidden layer

transfer
Tansig Puerline Tansig Tansig
ig. 8. Individual calibration graphs for (a) phenol; (b) 2-chlorophenol; (c) 3-
hlorophenol; (d) 4-chlorophenol under optimum conditions.

.1.6. Individual determination of phenols
Absorbance versus time graphs were plotted for solutions

ontaining various concentrations of the phenolic compounds
nder the selected working conditions. Fig. 8 shows the
ndividual calibration line obtained for kinetic runs of these
our phenols. Calibration curves are linear between 0.2 and
.0 �g ml−1 for phenolic compounds.

.1.7. Simultaneous kinetic determination of phenolic
ompounds

The multivariate calibration requires a suitable experimental
esign of the standard composition of calibration set to pro-
ide the best predictions. In order to select the mixtures that
rovide more information using a few experimental trials from
alibration set, three sets of standard solutions were prepared.
he orthogonal array design method L16(44) [59] was used for

our factors of components and four levels of concentrations to
hoose the numbers and concentration ranges of component in
ach of the calibration and prediction sets. In constructing the
hree sets of standard solutions the following points should be
onsidered: (i) concentration ranges of the three sets should be
omprised in the linear ranges of their calibration graphs, (ii) the
ontent of components having higher molar absorptivity should
e lower and the content of components having lower molar
bsorptivity should be higher, (iii) total content of all compo-
ents in sample mixtures should not be too high. Application
f a four-level orthogonal array design, led to preparation of
raining set of 16 samples with the compositions as shown in
able 1. The calibration set is used to train a neural net. A total
f 16 quaternary synthetic mixtures containing the four phenols
ere also prepared for prediction (Table 1). The prediction set

s used to determine the performance of a neural network on
atterns that are trained during learning, and 16 mixtures (val-
dation set) that were not included in the previous sets were
mployed as an independent test for finally checking the over-
ll performance of a neural net. The validation set was chosen
andomly. The mixed standard solutions treated as described in
ection 2.3. The absorbance-time data were recorded at 680 nm

or each mixture.

The kinetic data obtained from experiments were processed
y ANN, which was trained with back-propagation of errors
earning algorithm. The network consists of three layers, namely

O

dous Materials 157 (2008) 161–169

ne input layer, one hidden layer in which the number of nodes
ould be determined during training and prediction, and one
utput layer with a simple output node which contained the con-
entration of phenol sought for the chemical system studied. A
ias is used to calculate the net input of a node from all the nodes
onnected to it. The input nodes transferred the weighted input
ignals to the nodes in the hidden layer, and the same as the
idden nodes for the output layers. A connection between the
odes of different layers was represented by a weight, wi,j, and
uring the training process, the connection of weight was per-
ormed according to delta rule. The iteration would be finished
hen the error of prediction reached a minimum. The number
f nodes (neurons) in the input layer and, especially, the hidden
ayer, must be carefully optimized in addition to other variables
uch as the transfer function (linear or nonlinear) used by each
euron, the initial range and the distribution of the weights for
he connections between neurons from different layers.

Selecting the optimum parameter values for constructing a
etwork is no easy task; in fact, the parameters are mutually
elated, so a compromise must usually be adopted. The error
unction RSE used as criterion for finalizing the learning process,
efined as

SE (%) = 100 ×

⎡
⎢⎢⎢⎢⎢⎣

N∑
j=1

(Ĉj − Cj)
2

N∑
j=1

(Cj)2

⎤
⎥⎥⎥⎥⎥⎦

1/2

nd designated as %RSEC, %RSEP and %RSEV for the cali-
ration, prediction and validation sets, respectively. The ANN
odels that provided the lowest RSE for the prediction set were

hosen. Over fitting is avoided by using two sets of samples;
hus, weights are calculated from a calibration set while the
oncentration of another sample set (prediction set) is being
imultaneously predicted.
function
utput layer
transfer
function

Purline Puerline Logsig Purline
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Fig. 9. Plots of %RSEP as a function of number of nodes in the hidden layer
for (a) phenol; (b) 2-chlorophenol; (c) 3-chlorophenol; (d) 4-chlorophenol.

Table 3
RSE values for prediction and validation samples for the determination on
phenols in quaternary mixtures

Compound %RSE

Prediction Validation

Phenol 2.42 2.53
2-cl 3.75 3.66
3
4

r
i
s
o
fi
o
b
t
c

Table 4
Effect of chemical interferents on the determination of phenols by the proposed
method

Compound Maximum tolerance (fold)

Na+, K+, Tl+, Ni2+ 1000
Cl−, I−, NO3

−, SO4
2−, IO3

− 1000
Arginine, Serine, Leucine, Glycine 1000
Methionine,Glutamine, Sucarose 1000
Lactose, Fructose, Glucose, Starch 1000
4-Methoxyphenol, 4-nitrophenol 1000
Catecol 250
Hydroquinone 100
Mg2+, Ca2+, Cu2+, MoO 2− 500
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-cl 4.24 3.52
-cl 4.10 3.78

ecorded at different times that is usually addressed by subject-
ng data to principal component analysis (PCA), computing the
cores for the principal components (PCs) that describe the body
f data and using scores as AAN input. PC-ANN not only simpli-
es the training procedure of ANN by reducing the dimensions
f the measured data without losing any useful information,

ut also reflects its ability to account for extraneous noise in
he calibration. So, the reduced absorbance data with principal
omponent analysis were used as the input for ANN.

d
n
i

able 5
imultaneous determination of phenolic compounds in real samples

ample Spiked Foun

Phenol 2-cl 3-cl 4-cl Phen

ap water 0.00 0.00 0.00 0.00 0.002
0.16 0.15 0.15 0.23 0.14
0.28 0.30 0.38 0.53 0.26
0.56 0.53 0.61 0.77 0.55
0.84 0.77 0.77 0.92 0.85

ap waterb 0.33 0.23 0.30 0.15 0.34
0.45 0.38 0.61 0.53 0.46
0.67 0.61 0.77 0.92 0.66
0.95 0.92 1.15 1.15 0.94

iver water 0.00 0.00 0.00 0.00 0.005
0.42 0.38 0.65 0.58 0.44

erbicide 0.00 0.00 0.00 0.00 0.5 (
0.32 0.74 0.44 0.20 0.77
0.84 1.0 0.31 0.15 1.30
0.75 0.55 0.20 0.69 1.32

a Values in parenthesis show standard deviations (n = 3).
b Tap water were spiked by 4-methoxy phenol, 4-nitrophenol, and some amino acids l

10 �g ml−1) in addition to four desired phenols.
4

oncentration of each analyte is 1 �g ml−1.

Different types of hidden and output layer transfer function
ere evaluated and it became clear that the optimum transfer

unction for the four phenols used was different, although all of
hem were nonlinear. The optimum hidden and output transfer
unction that caused the minimum %RSEP were puerline-tansig,
uerline-puerline, logsig-tansig, and puerline-tansig for phenol,
-, 3-, and 4-chlorophenol, respectively.

The optimum learning rate was evaluated by obtaining those,
hich yielded a minimum in the error of prediction. If the learn-

ng rate for each network was set too high, the network became
nstable and divergent. As obvious from Table 2, the optimum
earning rates for phenol, 2- 3-, and 4-chlorophenol are 0.001,
.0024, 0.002, and 0.0018, respectively.

The proper number of nodes in the hidden layer was deter-
ined by training ANN with different number of nodes and

hen comparing the prediction errors from an independent pre-

iction set. Fig. 9 shows the plots of %RSEP as a function of
umber of nodes in the hidden layer. As observed, a minimum
n %RSEP occurred when proper nodes were used in the hid-

da

ol 2-cl 3-cl 4-cl

(0.001) 0.002 (0.002) 0.004 (0.001) 0.003 (0.002)
( 0.01) 0.17 (0.02) 0.14 (0.01) 0.20 (0.01)
(0.01) 0.31 (0.01) 0.35 (0.02) 0.50 (0.01)
(0.01) 0.55 (.01) 0.59 (0.01) 0.74 (0.01)
(0.01) 0.76 (0.01) 0.75 (0.01) 0.91 (0.01)

(0.01) 0.22 (0.01) 0.29 (0.01) 0.14 (0.01)
(0.01) 0.37 (0.01) 0.59 (0.01) 0.5 (0.01)
(0.01) 0.63 (0.02) 0.73 (0.02) 0.94 (0.01)
(0.01) 0.94 (0.01) 1.11 (0.02) 1.10 (0.02)

(0.002) 0.004 (0.001) 0.004 (0.002) 0.002 (0.001)
(0.02) 0.35 (0.03) 0.61 (0.03) 0.60 (0.04)

0.01) 0.004 (0.01) 0.003 (0.01) 0.001 (0.01)
(0.02) 0.72 (0.01) 0.45 (0.01) 0.18 (0.01)
(0.01) 0.97 (0.01) 0.32 (0.01) 0.16 (0.02)
(0.02) 0.53 (0.02) 0.19 (0.02) 0.68 (0.01)

ike tryptophane, histidine, tyrosine, leucine, glycine, arginine, serine, glutamine
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en layer for each particular network. The optimum number of
terations (epochs) for each component was also obtained. The

ost accurate networks are those, which have a limited number
f hidden neurons and relatively short training time. The train-
ng was stopped manually when the root mean square error of
he prediction set remained constant after successive iteration.

minimum in %RSEP occurred by using 150, 100, 80 and 50
terations for phenol, 2-, 3-, and 4-chlorophenol, respectively.
ontinued training beyond these values cause the %RSEP to

evel off or increase slowly.
Because there could be several local minima where the model

ould arrive, the algorithm was run from different starting values
f initial weights to find the best optimum, but nearly the same
esults were obtained. The neural network models were tested
n an external test set (validation set) that consisted of samples
elonging to neither the calibration set nor the prediction set. The
onstruction of optimized ANN model is summarized in Table 2.
ifferent characteristics of ANN models for two analytes do not
ermit to use a single ANN model with four-output node as a
uitable model for simultaneous analysis of four analytes. So,
eural network models for individual components were made
ith respect to output layer considered as a single node corre-

ponding to the analyte. The results obtained for prediction and
alidation samples are given in Table 3. The reasonable relative
rrors for each analyte indicate the accuracy of the proposed
ethod.

.1.8. Interference
Various possible interfering substances were tested under

he same experimental conditions for interference in the kinetic
easurements. A species was considered as interference when

ts presence produced a variation in the absorbance of the sample
reater than 5%. Table 4 summarizes the maximum tolerance of
hese compounds by the proposed analytical procedure. The tol-
rance range was 100–1000 fold in concentration of the potential
hemical interferent relative to the 1 �g ml−1 concentration of
he four target analytes. Thus, on this basis the selectivity for the
roposed method is satisfactory.

.1.9. Application
In order to test the accuracy of the method, known amounts of

henol, 2-, 3-, and 4-chlorophenol were spiked into some water
amples as they were found not to contain them initially. The
ppropriate amounts of other reagents were added afterward as
escribed in the Section 2.3. The proposed method was applied
o the determination of the analytes and satisfactory results were
btained. (Table 5). The proposed method was also satisfactorily
pplied for the determination of these analytes in a commer-
ial herbicide (from herbicide production company, H.P.C. Iran,
aveh) according to the procedure and with the network param-
ters optimized for the pure components. The analytical results
btained by PC-ANN are shown in Table 5.
. Conclusion

An analytical method has been developed for the simulta-
eous spectrophotometric determination of phenol, 2-, 3-, and

[

dous Materials 157 (2008) 161–169

-chlorophenol based on their different coupling reaction rate
ith PPD in the presence of K3Fe(CN)6 in a weakly basic
edium. PC-ANN models were applied for the simultaneous

rediction of the analytes because of severe overlap of spectral
ata at the analytical wavelength. The advantage of multicom-
onent analysis using multivariate calibration is the speed of
he determination of the components in a mixture, avoiding a
reliminary separation step.

The PC-ANN simplifies the training modeling procedure of
NN; the inclusion of only the significant PCs in the model
ecreases the contribution of experimental noise and other minor
xtraneous factors. This modeling shows a powerful potential for
he considered system without the prior knowledge of the kinetic
ate constant and reaction order.
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